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ABSTRACT

Title: Advanced Underwater Lift Device

Authors: David T. Flanagan, B.S.
Robert C. Hopkins, Ph.D.

Flexible underwater 1lift devices ("1lift bags") are used in
underwater operations to provide buoyancy to submerged objects.
Commercially available designs are heavy, bulky, and awkward to
handle, and thus are limited in size and useful lifting capacity.
An underwater l1ift device having less than 20% of the bulk and less
than 10% of the weight of a commercially available models has been
developed. The design features a dual membrane envelope, a nearly
homogeneous envelope membrane stress distribution, and a minimum
surface-to-volume ratio. A proof-of-concept model of 50 kg capacity
was built and tested. Originally designed to provide buoyancy to
mock-ups submerged in NASA’s weightlessness simulators, the device
may have application to water-landed spacecraft which must deploy
flotation upon impact, and where launch weight and volume penalties
are significant. The device may also be useful for the automated
recovery of ocean floor probes or in marine salvage applications.

Key Words: Marine technology, underwater structures, lift devices,
spacecraft recovery, flotation



INTRODUCTION

Flexible underwater l1ift devices ("1lift bags") are used by divers
during underwater salvage and construction operations to provide
buoyancy to submerged objects. An underwater lift bag consists of
a flexible impermeable envelope, and a harness that connects the
envelope to the load. The harness is first connected to the
submerged object, then air is introduced into the envelope. The
buoyancy provided by the air trapped in the envelope is transmitted
to the load by the harness.

A significant advantage of 1lift bags is their portability. They are
flexible and may be folded for transport. However, currently
available 1ift bags, particularly those of large lifting capacity,
are heavy, bulky, and awkward to handle. Generally, larger
commercial l1ift bags cannot be carried underwater until actually
needed because of their excessive bulk and weight. This adversely
affects underwater operations. For example, a search and salvage
mission requires a minimum of two sorties. The object to be
recovered is located and marked during the first sortie. A second
sortie is then needed to obtain and deploy the 1lift bag and recover
the object. Multiple underwater sorties reduce efficiency and
complicate diving operations, particularly those carried out at
significant depths.

Clearly, a lift bag of reduced bulk and weight would be useful in
underwater operations.

OBJECTIVE

The objective of this project was to improve the design the
underwater lift bag. Specifically, the study focused on enhancing
portability and ease of use by reducing weight and bulk. A further
objective was to produce a proof-of-concept model capable of
lifting 50 kilograms in fresh water.

PROPOSED CONCEPTS

Three factors contribute to the weight and bulk of currently
available 1lift bags. First, the material selected for the envelope
is usually a stiff, heavy polymer-coated fabric. Second, the
envelope shapes do not minimize the envelope surface-to-volume
ratios. Third, these shapes do not allow the envelope membranes to
distribute stress uniformly, which implies that some areas are
needlessly strong, and therefore needlessly bulky. The following
concepts are therefore proposed.

embra , - | n
The membrane of.a lift bag envelope must fulfill two functions. It
must provide mechanical strength and be impermeable to the trapped
gas that provides the buoyancy. Current designs fulfill both
functions with 2 single layer of material, usually canvas or nylon
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coated with a polymer. The fabric provides the strength and the
polymer coating provides the impermeability. This type of material,
often found in inflatable rafts and life vests, is both heavy and

bulky.

The requirements for strength and impermeability can be separated,
and a dual membrane approach adopted. The outer membrane can be a
porous fabric selected for mechanical strength. The inner membrane
can be a thin polymer selected for impermeability. The inner
membrane would be larger than the outer membrane, would conform to
it, and would not be bonded to it except at the opening of the
device. Since neither material must fulfill the requirements for
both strength and impermeability, the pool of candidate materials
for each membrane would be significantly greater.

In a previous unpublished study, underwater lift devices with dual
membrane envelopes shaped like cylinders and rectangular sleeves
were successfully deployed. Although localized areas of high stress
were noted on the envelope membranes, the dual membrane concept
seemed feasible (1).

The dual membrane approach is also used for gas containment in the
design of the Pressure Garment Assembly of the Shuttle
Extravehicular Mobility Unit (spacesuit). A gas permeable outer
layer provides structural strength while a lighter, thinner, inner
layer provides impermeability (2).

) eomet Optimigatio

Many shapes are available for underwater lift device envelopes. An
envelope geometry with a minimum surface-to-volume ratio will
minimize the amount of material required per unit lifting capacity,
and thus reduce the bulk and weight of the 1lift bag. A homogeneous
stress distribution in the membrane of the envelope is also
desirable. A nonhomogeneous stress distribution implies that some
areas are needlessly strong, and therefore unnecessarily heavy and
bulky.

The envelope shape, then, must provide a minimum surface-to-volume
ratio and a homogenous stress distribution. These criteria can be
fulfilled by modelling the envelope after a pendant drop. A pendant
drop is the equilibrium shape of a liquid droplet, in which the
gravitational force acts to draw the liquid away from a substrate
to which it is attached. A drop of water hanging from the tip of an
eye dropper is an example. The surface tension of the fluid insures
that the pendant drop exhibits the lowest possible surface-to-
volume ratio for its physical environment. An underwater 1lift
device modelled after a pendant drop would therefore also exhibit
a minimum surface-to-volume ratio. Also, the surface tension of a
pendant drop is everywhere constant. Since the surface tension can
be equated to the membrane stress of an underwater lift device
modelled after a pendant drop, a homogenous membrane stress
distribution can be assured. Because of these factors, the pendant
drop can serve as a model for an underwater lift device.

3



APPROACH
ateria ele

Significant reductions in lift bag bulk and weight can be achieved
by adopting a dual membrane envelope. The best material for each of
the two membranes must be selected based on a comprehensive trade

study of available materials.

Parameters for any trade study of materials for the outer membrane
and harness material of an underwater lift device will include, at
a minimum, mechanical strength, dimensional stability, weight,
workability, abrasion resistance, ultraviolet light resistance,
salt water resistance, availability, and cost,

Material Testing

A lift device modeled on the pendant drop will have a specific
shape. It will experience stress and exhibit strain under load.
Failure to correct for stress can result in deformation of the
device from optimum shape and induce a nonhomogeneous stress
distribution. Correction for stress requires knowledge of a
material’s tensile modulus. Consequently, these values must be
determined for both membrane and harness materials through testing.

Also, the outer membrane of the envelope is made of fabric pieces
that must be joined together. One method of joining is sewing,
which can cause dimensional changes in fabric structures. Sewing a
seam can shorten its linear dimension by as much as ten percent,
- depending on fabric type, stitch selected, number of stitches per
inch, thread tension, operator technique, and other factors (3).
The extent of this sewing "take-up" must be determined.

Tensile Modulus Testing
The tensile modulus relates streds to strain

strain =-% stress

or

aL_1
L Y

R L

where Y is Young’s Modulus with units in newtons per meter squared
(N/m?), aL/L is the strain, or change in length per unit original
length, and F/A is the stress applied in N/m°. Although this
equation can ke directly applied to fabric or cord, it is
convenient to modify the equation to reflect the symmetry of the
tested item. For the outer membrane material of constant thickness,
the equation for tensile modulus becomes



AL 1 F

L Y, w

where Y, is the modulus in N/m and w is the width of the strip
under test in meters. The harness material equation is similar, but
because the cross-sectional area can be treated as approximately
constant, the area parameter can be eliminated:

alL_ 1

Ao F

I Y,

In this equation the modulus Y, is rendered simply in newtons.
Ssewing Take-up Testing

The sewing take-up of the seams can be determined using coupons of
fabric. The length of a doubled piece of outer membrane fabric can
be measured before and after sewing, and the decrease in length
noted.

Envelope Geometry Optimization
Background S8tudy

The shape of a pendant drop varies with respect to several
parameters, including volume, the densities of the contained and
surrounding fluids, the interfacial surface tension, and the
strength of the gravitational field. Pendant drops are reviewed by
- Hartland and Hartley in "Axisymmetric Fluid-Liquid Interfaces" (4).

Notation for the pendant drop is shown in Figure 1. In the
nomenclature of reference 4, significant variables include:

b: the radius of curvature at the apex. Note that b=r,=r,
at the apex
r,¢ the radius of curvature in the meridional plane of the
surface at any point
r,: the radius of curvature orthogonal to r,. The origin of r,
is always on the axis of symmetry. Over any incremental
area dA on the surface, r, is perpendicular to r,
z: the vertical distance along the axis from the apex. Note
z = 0 at the apex
x: the radius of the drop in the plane perpendicular to the
axis of symmetry at any point z on the axis of symmetry
s: the distance on the surface of the drop from the apex to
the plane of the circle defined by the radius x
©6: angle of the line tangent to the surface at position s
with respect to a plane tangent to the apex (labelled
YANGLE" in Table I)
a: the area of the surface of the drop from the apex to the
plane of the circle defined by the radius x
v: the volume of the drop from the apex to the plane of the
circle defined by the radius x

5



The dimensionless parameter B is the radius of curvature at the
apex of a pendant drop. It implicitly defines the overall shape of
the pendant drop. Figure 2, taken from reference 4, shows the
profiles of several pendant drops with respect to log(B). It is
convenient to refer to log(B) as the "shape factor." :

The profile of a particular pendant drop must be determined by
numerically solving a second-order ordinary differential equation.
Hartland and Hartley used a fourth-order Runge-Kutta algorithm
coded in Fortran IV for this purpose. They provide data tables for
83 selected values of log(B) from -2 to +1. The data table for the
pendant drop for which log(B) = -0.24 is presented in Table I.
Accuracy better than one part in 10° is claimed.

An important feature of Hartland and Hartley’s work is that the
values given in each table are nondimensionalized by a factor c,
where ¢ is the product of the density difference between the
contained fluid and the surrounding medium and the acceleration
field divided by the surface tension

A
c= —Z—Q [units = m™2]

This parameter includes all of the essential characteristics of a
pendant drop and its physical environment. To recover actual data,
each linear value provided in the tables must be divided by c'2.
Correspondingly, area values must be divided by c, and volumes by
c*2, For exam?le, the radius of curvature at the apex in meters
would be b=B/c'/’.

Sshape Selection

The pendant drop shape best suited for application to underwater
1ift devices must be determined. The important parameters are:

Plane of Truncation: A plane of truncation is perpendicular to the
axis of symmetry and divides a pendant drop into two sections. The
section containing the apex is pertinent to the design of an
underwater lift device. The plane of truncation is identified by
the value of 6 at the point on the surface of the pendant drop
where the plane of truncation intersects it.

Selection of the plane of truncation directly affects harness
design. The harness is attached to the opening of the envelope at
the plane of truncation. Each harness leg must lie in the plane
tangent to the envelope surface at its attachment point (Figure 3).

surface-to-Volume Ratio: The surface-to-volume ratio directly
affects the bulk and weight of an underwater 1lift device.
Minimizing this parameter will minimize both bulk and weight.

Membrane Stress: Minimizing membrane stress will allow the use of
lighter, less bulky materials to be used in the design of the outer

membrane.



Modelling Approach

Gore Design

The smoothly curved surface of a pendant drop cannot be exactly
duplicated using flat pieces of fabric, but it can be approximated.
Dividing the surface into a finite number of gores (as in a
parachute) seems an obvious approach, but the best method of
forming such gores needs to be determined. Three candidate methods
of developing the needed gore patterns are referred to as the x-
radius method, the r,-perp method, and the r,-radius method.

X-Radius Method

The data table for a pendant drop of a particular value of log(B)
provides dimensionless data with respect to selected values of
(labelled "ANGLE" in Table I). If s represents a distance from the
apex along a gore axis, the width of the gore w at that point s can
be approximated by

w=2TX

n

where n is the number of gores selected (Figure 4).

The radius x is only perpendicular to the surface of a pendant drop
when © = 90 degrees. Thus, perpendiculars constructed from the gore
axis based on the above width would not accurately define the gore
borders. As an approximate alternative, arcs of the appropriate
radius (4w) can be struck from each point s on an arbitrary gore
axis. Line segments tangent to the arcs may then be drawn to define
the gore edges.

R,-Perp Method

The r,-perp method requires erecting perpendiculars to the axis of
the gore at each known point s along that axis. The length of each
perpendicular can be calculated as follows.

Referring to Figure 4, for the selected number of gores n, the
central angle in the plane of the circle defined by the two radii
x that intersect the gore borders is

2%

A B =
n

The secant line sl can be drawn and is found by

sl = 2xsin:;

Then, the value for r, is calculated from x and 6 associated with
the point s



X
sinf

Ir, =

And, using r, and the secant line sl, the angle a in the plane of
r, and sl is determined by

S1 . gin(®
—2—1-; Sln(z)

or

a = 2arcsin(4§L)
2r,

Substituting the values preViously obtained for—r2 and sl

2xsin®

o = 2arcsin(——n—)
2X

sin®

and simplifying

a = 2arcsin(sin-% sin®)

Now, if r, can be assumed to be the radius of a circle over an
incremental da in the plane defined by itself and the secant line,
the gore width w on the surface is related to the circumference of
that circle by

LA
2RI, 2%
or
w=ear,

Substituting the values previously obtained for a and r, gives

2 xarcsin(sin= sinf)
W= n

sin6
This value, divided in half (4%w), 1is the 1length of the
perpendicular to the gore axis to be erected at each point s. Once

the perpendiculars are in place, their endpoints can be joined by
line segments to define the gore edges.

Rz-Radius Method

The r,-radius method is similar to the r,-perp method, except that
instead of erecting perpendiculars, arcs are struck whose radii are

8



calculated in the same manner that the 1lengths of the
perpendiculars are found in the r,-perp method. With the arcs in
place, tangent lines can be drawn as in the x-radius method to

define the gore edges.

The overall differences between the x-radius and r,-radius methods
are small. Figure 5 compares the differences in the radii of the
arcs used to fabricate the gores of a hypothetical underwater lift

device of 100 kilogram capacity.

As the number of gores n approaches infinity, the shape will
approach the ideal theoretical shape regardless of the modelling

method used.

Correction For Stress

The dimensional data for gore construction and harness leg length
need to be corrected for the stress on the basis of the tensile
moduli of the materials. This can be done by multiplying each
linear dimension by an experimentally determined correction
coefficient. The stress correction coefficient for the outer
membrane material can be found as follows:

As previously discussed, the equation for the tensile modulus of
the membrane material can be written
AL _ 1

AL 1 F

L Y, w

The left-hand side of this equation is the ratio of the change in
length alL due to stress to the initial unstressed length L. The
right-hand side contains a term for stress in force per unit width.
This stress F/w is the uniform envelope membrane stress, which is
equivalent to the surface tension of a pendant drop o, or

F

—_—_ g
w

so the equation for tensile modulus becomes

AL 1
—_— F e
L Y,
Adding unity to both sides
_I.'+.9£'=._j.'_o+z‘£
L L Y, Y,

or



L+al _ 9+Y,

L Y,

Now let L, be the desired final, stressed, dimension. It is the
combination of the initial unstressed length L and the change in
length due to stress, aL: - SRR : :

L, =L + AL
Therefore
L, - o+Y,
‘ L Yy
or
Y
L=1L a
- f o+Y,

This equation states that a corrected unstressed dimension L is
equal to the desired, final, stressed 1length L, times the
correction factor F., where

Thus, as the membrane stress o increases, the stress correction
coefficient decreases, which in turn reduces the linear dimensions
to which it is applied.

A stress correction coefficient for the harness material can be
obtained in an analogous fashion.

Correction For Sewing Take-Up

A sewing take-up correction coefficient is needed to compensate for
reduction in seam length which may occur during fabrication. Take-
up may be calculated by

where L, would be the original length of the test coupon, L; the
final length of the coupon after sewing, and 100% x T, the percent
of the original length of the coupon that remained after sewing.
The correction factor applied to the linear dimensions would then

be 1/T;.
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Correction for Modelling Method

The modelling methods above approximate a curved surface using
planar segments. This approach can induce departures from the
optimum theoretical shape. Point 1loading or other surface
discontinuities at the envelope/harness interface may also have
such an effect. Therefore the actual volume of the envelope may
vary from the theoretical volume. To compensate for this, a
correction factor can be defined. If V, is the actual volume of a
model as determined by experiment and V, is its theoretical volume

then , ‘ .

Va ' '

stvt

where 100% x V, would be the percent change of the actual volume
with respect to the theoretical volume. The correction factor to be
applied to an initial, desired volume would then be 1/V.

Computer Design Program

A computer is ideally suited for modelling the pendant drop shape
and for developing the gore planform and other construction data.
The dimensionless data for the selected pendant drop shape can be
incorporated into a computer program. Correction factors for
materials elasticity, sewing take-up, and modelling method can also
be included. The program would be interactive, allowing input to be
modified and output to be displayed on the screen. Ideally, input
"would consist solely of the desired capacity of the 1lift device. As
a minimum, output would consist of the theoretical parameters of
the stressed lift device, and the corrected data required to
manufacture the envelope gore pattern and harness components of the
device.

ode n
suspended Testing

The actual capacity and shape of a model lift device while under
load can be tested by suspending the 1lift bag by its harness
confluence point and filling it with water. Because the volume of
water a 1lift device would contain in this configuration is
approximately equal to the amount of water it would displace in use
underwater, the forces on all parts of the lift device would be
nearly identical to those that would occur underwater if the 1lift
bag were filled with air. This test method would provide a
comfortable and logistically simple method of observing the models
under load. A logical alternative would be to do all testing
underwater but with much greater inconvenience.

Capacities can be obtained by filling models suspended by their

harness conflueice to maximum capacity, and then quantifying the
contained water by weighing or by measuring volume.

11



To evaluate a model for proper shape, its actual profile can be
compared to its theoretical profile in two ways. A less accurate
method would involve visually comparing the profile of the
suspended, water-filled lift device with -a representation of its
ideal shape, such as a correctly scaled silhouette. Such a
silhouette can be readily fabricated from the data for each shape
factor log(B) given in reference 4. Greater accuracy could be
obtained using a simple photogrammetric technique. First, a
silhouette of the theoretical shape can be photographed with slide
film using a camera equipped with a telephoto lens. The long focal
length of the lens would provide a relatively flat field, and the
camera-to-subject distance could be adjusted so the image filled
the frame. Then, without moving the camera, the silhouette could be
replaced by the suspended, water-filled lift device, which would
also be photographed. The two slides could then be projected from
the same distance onto a screen and various comparative linear
measurements taken.

Bulk and Mass Comparison Testing

An objective of this project is to reduce the bulk and weight of a
lift bag. To quantify bulk and weight reduction, models produced
during this project must be compared to commercially available lift
bags of equal capacity. Weight can be obtained with reasonable
accuracy using a laboratory balance. The volume of a packaged
flexible device 1s considerably more difficult to determine
accurately (5). However, estimates can be made by measuring linear
dimensions of the folded lift devices.

Underwater Testing

Models also can be evaluated underwater. Test parameters of
interest would be ease of transport, ease of inflation, general
stability on ascent and at equilibrium on the surface with various
suspended loads. Underwater photographs would be useful for later
evaluations of shape and performance.

MATERIALS & METHODS

A summary of the models constructed in the course of this study may
be found in Appendix A. Details of the materials and methods used
to construct and test these models are presented in Appendix B.

RESULTS & DISCUSSION
Materjal selection
Outer Membrane
The material selected for the outer membrane was a parachute canopy
fabric manufactured to the specifications of MIL-C-7020G Type I
(6). Type 1 fabric was developed in World War II as a replacement

for oriental silk, and continues to be specified for military and
emergency personnel parachutes today. It is fabricated in large
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quantities to consistent quality specifications, is widely
available, and is inexpensive. Its disadvantages include poor
resistance to ultraviolet light and abrasion, and poor dimensional
stability (3). Pertinent characteristics taken from the military
specification are given in Table II.

Harness

Two types of cord used as suspension lines in various parachutes
were selected as harness material for this study: MIL-C-5040G Type
IA and Type IIA (7). Type IA was used for the smaller models, and
Type IIA for the largest lift device. Both are lightweight hollow
braided nylon cords. Pertinent characteristics taken from the
military specification are given in Table III.

Inner Membrane

Off-the-shelf polyethylene trash bags were used as inner membranes.
Various shapes and sizes were employed, depending on the size of
the model being tested. The primary selection criterion was that
the polyethylene bag be large enough to conform to the outer
membrane without experiencing tensile stress.

ate estin
Tensile Modulus Testing

The tensile moduli for both materials increase with the total
amount of stress. A graph showing the modulus of the membrane
material with respect to stress is shown in Figure 6. Figure 7
gives the same data for Type IIA harness material. Type IA harness
material was not tested. The harness leg length of models equipped
with Type IA harnesses was determined under load during suspended
testing, thus knowledge of the tensile modulus of this material was
not needed.

The relationship between stress and the tensile modulus is clearly
not linear. Although both data sets seem qualitatively similar, an
exponential curve provided the best fit for the membrane data, and
a linear expression best described the harness material data. Why
the same type of curve did not apply to both nylon materials is not
completely understood, but may be related to the limited ranges
tested. The membrane material was tested to 25% of its minimum
rated ultimate tensile strength. The harness material was tested to
only 17% of its minimum rated ultimate tensile strength. The
harness materiai test data may therefore appear linear due to the
more limited range tested.

The data may also have been influenced by the test procedure.
Tensile modulus testing of such materials is difficult to perform
accurately. The pseudo-plastic nature of the material, creep,
variations in the orientation of the material in the clamps,
undetected slippage, and, for nylon materials, variations in
environmental conditions can affect the results.

13



Sewing Take-up Testing

The selected seam type shortened the linear dimension of a seam to
about 98% of its original value. Thus T; = 0.98 and 1/T, = 1.02.

wmm;m
shape Selection

Plane of Truncation: Possible values for the plane of truncation of
the pendant drop were arbitrarily limited to 115 < & < 135 degrees.
Planes of truncation where 6 < 115 degrees would result in harness
legs that were judged to be too long. Longer harness legs increase
bulk. Conversely, planes of truncation where © > 135 degrees
suggest excessively short harness legs. Since the load is greater
on excessively short harness legs, they must be stronger and
therefore made of bulkier material, again increasing bulk.

Limiting the range of © to 115 < © £ 135 degrees limits the harness
angle range to between 25 and 45 degrees (Figure 3).

surface-to-vVolume Ratio: The surface-to-volume ratios of a range of
pendant drop shapes were evaluated where 115 < € < 135 degrees.
Considering the data available in reference 4, candidate pendant
drop shapes include those for which -2.0 £ log(B) £ -0.24. Pendant
drops where log(B) > -0.24 do not have values of & falling within
the chosen range of 115 £ 6 £ 135 degrees. Of the candidate shapes,
the pendant drop log(B) = =-0.24 exhibited a dimensionless surface-
to-volume ratio of 4.179 where 6 = 115 degrees. The surface-to-
volume ratios of other candidate shapes, within the applicable
range of 6, were all greater than 4.179. This search is summarized
in Figure 8.

Membrane 8tress: The parameter c has been discussed previously:

c:_A.Es
[+

Since the dimensionless value for volume V is related to actual
volume v by

then

Thus, membrane stress o increases as the dimensionless volume V
decreases for a fixed actual volume V.
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The shape described by log(B) = -0.24 exhibits a dimensionless
volume V = 1.053 at 8 = 115 degrees. Shapes where log(B) < =-0.24
all have a lower value of V at @ = 115 degrees, and would
therefore, if all other conditions remain constant, exhibit greater
membrane stress for a given volume V.

Therefore, based on the above, the most suitably shaped pendant
drop for modelling an underwater lift device has the shape factor
log(B) = -0.24 and is truncated at © = 115 degrees.

mpute r

The interactive design program was written in generic BASIC on a
personal computer and evolved with the project. For example, before
tensile modulus and sewing take-up testing was performed, the
program requested that arbitrary values be supplied for these
parameters. Later, these values were supplied automatically by the
program based on the programmed test data. Also, the program was
modified as required to incorporate the gore modelling technique
being investigated. Thirteen significant revisions were made to the
original code. The most recent edition is listed in Appendix C.

Model Testing
VSuspended Testing
Visual Profile Evaluation .

X-Radius Method: The first three models were designed using the X-
radius method. During visual examination a slight tendency towards
flatness in the apex area was noted. Distortion of the envelope
around the mouth of the model at the harness interface was also
apparent.

The flatness in the apex area was probably due to the gore
modelling method. As noted, the x-radius method accurately reflects
the surface arc length only at a & = 90 degrees. At all other
values of 6, the surface arc length given by this method is greater
than actual (Figure 4). Therefore, this method may produce "excess"
gore material, especially at the apex, which would confer an oblate
shape.

The envelope around the opening was distorted. Point loading of the
periphery of the opening by the harness legs clearly disturbed the
otherwise nearly homogeneous membrane stress distribution. In the
horizontal plane, the mouth or opening was lobed, reducing its
diameter by as much as 15%. In the plane tangent to the surface of
the envelope at the harness attachment point, the opening was
scalloped. This type of distortion was present to varying degrees
on all models. Figure 9 presents a sketch of this distortion.

R,-Perp Method: The r,-perp method was used for only one model. It

was immediately obvious by visual examination during suspended
testing that this modelling method was not acceptable. The model
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profile was prolate, appearing nearly conical from the apex to at
least 6 = 50 degrees. The model also showed envelope distortion in
the mouth area similar to that observed in all other models.

-Radius Method: The r,-radius method was used for all subsequent
models. The shape of these models compared favorably to the ideal
profile, and, on the basis of visual comparison, this modelling
method was judged superior to the other two. The distortion in the
mouth area remained, however.

Photogrammetric Profile Comparison

Model #6 was a 12-gore, 5 kilogram model constructed using the r,-
radius method. This model most closely resembled the ideal shape
when compared visually with the silhouette. Therefore, this model
was further evaluated using the more quantitative photogrammetric
method. From the apex to about 6 = 100 degrees, the fidelity of the
model with respect to the profile was excellent. The harness
affected the shape of the envelope at values of 6 > 100 degrees. As
with all models, the cross-sectional shape and the opening were
lobed rather than circular, and the opening was scalloped in the
plane tangent to the envelope at the harness attachment point. The
data from the photogrammetric profile comparison test are shown in
Figure 10.

Capacity Testing

The capacities of the five 5 kg models were determined. Values were
generally less than predicted, most probably because of the
distortion of the envelope caused by the harness. In all models,
peint loading of the periphery of the opening tended to reduce its
diameter, which tended to reduce the volume of the envelope. Also,
the cross-sectional shape of all models was lobed rather than
circular, which reduced the cross-sectional area and therefore the
volume of the envelope.

Model #6 most closely resembled the true theoretical shape. The
capacity of this 5 kg model was determined during suspended testing
to be 4560 mL, or 0.912 of the design value of 5000 mL. As a
result, the inverse of this value, 1.097, served as a volume
correction coefficient for this type of model.

Bulk and Mass Comparison Testing

Bulk and mass of the proof-of-concept model (Model #7) and the
commercially available lift device are presented in Table IV. The
proof-of-concept model has less than 20% of the bulk and less than
10% of the weight of the commercial version. It should be noted,
however, that a small plastic dump valve is installed in the apex
of the commercial model to allow venting the bag under load. The
proof-of-concept model did not have this feature, which would have
increased both its weight and volume slightly.
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Underwater Testing

Lead weights provided simulated 1loads for underwater testing.
Values given for the weights are estimates provided by the

manufacturers.
Model #1

Test #1: Ascent with 0.9 kg (2 1lbs) was stable. Acceleration was
noted as the model rose and the air in the envelope expanded to
provide greater buoyancy. Changes in shape due to the expanding air
and increasing profile drag were noted, but did not adversely
affect stability. Stability on the surface was good in both quiet
and intentionally disturbed water.

Test #2: With a load of 4.5 kg (10 1lbs), ascent was stable and,
after an initial acceleration, the velocity seemed constant. No
deformations of the envelope were noted. Stability on the surface
was good, although the model became fully submerged more readily in
disturbed water because of its heavier load.

Test #3: When released with a fully inflated envelope and a load of
0.9 kg (2 lbs), acceleration was rapid and the model followed a
helical path to the surface. Air was continuously vented from the
opening during ascent. At the surface the model was stable, and
although the envelope was only 70% to 80% full, buoyancy was
adequate to keep the load afloat.

Model #6

Test #1: This model performed much like Model #1. However, this
test was conducted with Model #6 ten times to evaluate the changes
in envelope shape during ascent: Before lifting from the bottom of
the pool the envelope was elongated, with a small bubble of air
trapped at the apex. When buoyancy became adequate, the model left
the bottom. As the velocity increased, the apex area flattened and
increased the profile diameter, but the size of the opening was
relatively unaffected. Finally the opening began to expand. Before
expansion could be completed and the shape fully developed, the
model reached the surface and assumed a steady state configuration
with the envelope about half full.

Test #2: Model #6 was slightly larger than Model #1, so 5.0 kg (1l
1bs) was required to load it to near-maximum capacity. During the
test, this model performed much like Model #1.

Test #3: The performance of Model #6 during this test was not
substantially different from the performance of Model #1.

Model #7
Performance of this model with a submaximal load (22.8 kg) was as

expected. Inflation was easy to perform and ascent was smooth. The
model was stable on the surface with the amount of air required to
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jnitiate ascent. The model was also stable when fully inflated on
the surface, both in quiet and intentionally disturbed water.

- CONCLUSIONS

Several models of an advanced underwater lift device have been
designed, constructed, and tested, including a proof-of-concept
model with a capacity of 50 kg. The models exhibit significantly
improved characteristics compared to commercially available

designs.

It has been shown that weight and bulk of an underwater lift device
can be substantially reduced by modelling the device after a
pendant drop, and by using a dual membrane envelope. In one design
of 50 kg capacity, bulk was reduced to less than 20% and weight to
less than 10% of the same properties for a commercially available
design of equivalent lifting capacity.

Although the shape was designed to exhibit a uniform membrane
stress distribution, some departures from the theoretical shape
indicate some degree of nonhomogeneous stress distribution. These
include the scalloping at the envelope/harness interface and the
lobed cross-sectional shape noted at the opening, and through any
plane perpendicular to the axis of symmetry near the opening. A
factor in the amount of deformation seems to be the number of gores
and harness legs used to construct the device. Both theory and data
suggest that a design using more gores and harness legs can provide
a shape closer to ideal.

The relative proximity of the 12 harness legs to each other made
the 12-gore models slightly more difficult to inflate than the 6-
gore models, particularly in smaller sizes (5 kg). This effect was
much less noticeable with the larger 12-gore model (50 kg), and
should not present significant problems in units of this size or

larger.

The use of staples to bond the inner and outer meﬁbranes together
at the opening of the underwater 1ift devices was less effective
than the use of double sided masking tape.

Overall, the use of a pendant drop shape plus a dual membrane
envelope has been shown to significantly advance the design of an
underwater lift device. Areas for improvement have been noted, and
recommendations for further study are outlined below.

RECOMMENDATIONS

The materials used in this study were selected arbitrarily. A -
comprehensive trade study should be performed to identify more
appropriate materials for use in the field.

The tensile moduli of the selected materials need to be determined
with better accuracy.
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Membrane stress on the surface of the envelope may be quantified in
future testing using strain gauges designed for fabric.

only 6- and 12-gore designs were used in this study. Other values
that could provide better stress distributions or that could be
easier to use could be investigated.

A more suitable method of bonding the inner membrane to the outer
membrane at the opening of the envelope needs to be developed for
use in the field.

The combination of conventional envelope materials (polymer-coated
fabrics) and the pendant drop geometry could provide a less complex
(although less effective) solution to bulk and weight reduction.
This could be investigated. Similarly, application of the dual
membrane envelope concept to conventional envelope geometries could
also be pursued.
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Table I. Dimensiohless parameters of a pendant d4rop having a
shape factor log(B)=-0.24 (4). -

#

ANGLE ARC LENGTH
=90 =S

5

© 10
15

20
25

30

35

%0,
45

95 -

100
105
110
115

5.02324E-02
1.00560E-01
1.51079E-01
2.01883E-01
2.53091E-01
3.04793E-01
3.57109E-01
L,10361€E-01
4.,64083E-01
5.19022E~-01
5.75144E-01
6.32639E-01
6.91726E-01
7.52668E-01
8.15783E-01
B.81472E-01
8.50257E-01
1.02285E+00
1.10029E+00
1.184L20E+00
1.27748E+00
1.3864TE+0D
1.53332E+90

*1.1741TE+02

115

110
105
100
95
S0
85
30
75
70
65
60
55
50
5
40
35
30
25
20
15
10
5

0

?

1.85557E+00
1.95657E+00
- 2.02254E+010
2.07575E+00
2.12273E+90
2.16667E+00
2.20966E+00
2.25344E+0D
2.29984E+00
2.35121E+00
2.61119E+00
2.48662E¢00
2.59409E+00
2.80291E+00
3.75348E+00
4.19386E+00
L.48056E+00
4.71535E+00
4.92422E+00
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5.30580E+00
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X

5.01687E-02
1.00050E-01
1.49356E-01
1.97798E-01
2,45D86E~D1
2.€0930E-01
3.35036E-01
3.77108E-01
4.16846E-01
4,53945E-01
4.88092E-01
5.18965E-01
5.46228E-01
5.69529E-01
5.88486E~01
6.02679E-04
6.11630E-01
6.14764E-01
6.11348E-01
6.00344E-01
5.80079E-04
5.47169E~01
4.50549E-01
4,13273E-01

3.46227E~-01 .

3.07168E-04

- 2087209E-01

2.75636E-01
2.69476E~-01
2.67546E-01
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2.75145€E~-04
2.85211E-01
3.00696E-01
3.23718E-01

- 3.58673E~01

L.16684E~-01

5.44892E-D1

1.19004E+00
1.51316E400
1.74024E+00
1.93804E+00
2.12318E+00
2.30283E+00
2.48115€+00
2.66120E400
2.8L591E400
3.03873E+00

F4

2:19076€E-03
8.,75879E~-03
1.86914E-02
3.49677E-02
5.45587E-02

7.84281E-02

1.06533E-01

1.38823E-01

1.75245E-01
2.15743E-01
2.60260E-01
3.08741E-04
3.61141E-01
4.17431E-01
4.77611E-01
5.41727€-01
6.09905€~-01
6.82409E-01
7 .59746E- 03
B.42904E-01
9,33926E-01
1.03779E+ 00
1.17324E+00

1.32768E4+00

1.46134E+00

1.554LL5E400 .

1.61730E+00D

1.66922€E+00"

1.71577E+00
1.75966E+00

- 1.,80260E+00

1.84599E+00
1.89127E+00
1.94023E+00
1.,99559E+00
2.06242E+00
2.15283E+00
2.31758€E+00
3.01546E+00
3.34443E+00
3.48934E+0Q0
3.61566E¢00
3.71220E+00
3.78669E+00
3.84295E%00
3.88287E+00
3.90716E+00
3.91551E+00

20

AREA

7.92215€-03

3.16882E-02
7.12969E-02
1.26746E-01
1,98033E-01
2.85152E-01
3.88100E-01
5.06870E-01
6.41456E-01
7.91853E-01
9.58061E-01
1.14009E+00
1.33796E+00
1.55173€+00
1.78152E+00
2.02753E+00
2.29015E+00
2.57008E+Q0
2.86864E+400
3.18837E+00
3.53468E+00
3.92117E+00
4s40083E+00
4.89182E+00
5.24821E+00
S.45510E+00
5.57840E+00
5.67206E+00
5.75240E+00
5.82644E+00
5.89889E400
5.97370E+00
6.05529E+00
6.14972E+0D
6.26723E+00
€.42872E+00
6.69004E+00
7.31930E+00
1.24761E+04

1.62098E+04 "

1.91379E+01
2.18L97E+01
2.645136E+01
2.72180E+01
3.00286E+01
3.30087E¢04
3.62326E+01
3.98018E+01

VOLUNE

8.66629E-06
1.38042E-04
6.9364BE-04
2.16945E-03
5.22549E-03
1.06576E-02
1.93604E-02

-3.22825E~-02

5.03826E-02
7.45758E-02
1.05684E-01
1.44389E-01
1.91180E-01
2.46321E-01
3.09814E-01
3.81384E-01
4,60475E-01
5.46269E-01 -
6.37752E-01

- Te338LLE-01

8.33697E-01

'9.37689E-01

1.05287E+00
1.15250E+00
1.21303E+00
1.24414E+00
1.26153E+400
1,27 4441E+00
1,28525E+00
1.29516E+00
1.30486E+00
1.3149SE+0D0
1.32609E+00
1.33926E+00
1.35617E+00
1.38054E+00
1.42311E400
1.54251E+00
3.23995E+00
4.95194E+00
6.40223E+00
7.74123E+00
8.9885LE+00
1.01315€+04
1.11394E+04
1.19648E+01
1.25392E+01
1.276164E¢01



Table II. Pertinent specifications of MIL-C-7020G nylon parachute

cloth (6).
—

Property Type I Type II Type III
Weight, Maximum (ou/yd) 1.1 1.6 1.6
Thickness, Maximum (in) 0.003 0.004 0.004

Tensile Strength,
Minimum (lbs/in)

Warp 42 50 50

Fill 42 50 50
Elongation, Minimum

Both Directions (%) 20 20 20

Tearing Strength,
Minimum (1bs)
Warp 5 +/- 1 5 4
Fill ’ 5 5 4

m
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Table III. Pertinent specifications of MIL-C-5040G braided nylon
cord (7).

Property Type IA Type IIA
Breaking Strength,

Minimum (1lbs) 100 225
Elongation, Minimum (%) 30 30

Length Per Pound
Minimum (ft) 1050 495

—
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Table IV. Bulk and weight of the proof-of-concept model vs. the
control model of the same capacity.

Bulk Weight
(Volume) (Mass)
cm® gms
Model #7 (50 kg) 735 114
Proof-of-concept model :
J. W. Automarine (50 kg) 4,129 1,351

Commercial control
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Table V. Characteristics of some aerospace materials poténtially
useful in the design of underwater 1ift devices (3).

Characteristic Dimensions Silk Cotton| Rayon | Nylon Dacron Nomex Keviar 29‘
Staple length Inch 400-1300 yds| %-2% |Continuous| Continuous | Continuous| Continuous | Continuous
Tensile sirength Ibfin? - - - 118,000 | 120,000 90,000 | 370,000
Tenacity Gr/Denier 3852 21-6.3| 1.5-5.0 6-9 6-9 5 20-22
Specification weight Gr/Cm® 1.34 1.52 1.5 1.14 1.38 1.38 1.44
Uhtimate elongation % 1331 37 15-25 2540 12-20 16 35
Zero strength : - ) - .

(melting point) °F- 302(D) 450(D)} 350450 480 485 800 _ 850
50% strength retention *F 280 " 300 - 330 350 500 550
-Minium yamn size Denier 113 15 20 20 20 200 50
Filamentdiameter | Inch | 00005 | <0.001] 0.0005 | o0.001 0.001 - 0.0005
Wet strength % 75-95 110-1300 45-55 85-90 95 65 100
Resistance 0

Ultraviolet rays P G P P G G D

Storage, aging G G G E E E G

Fungus, bacteria P P P G G G G

Flame P Burns | Bums G G E G

NOTE: P = poor, G = good, E = excelient
(D) decomposes

#
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Figure 1. General notation for pendant drops (4).
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Figure 2. Profiles of pendant drops with respect to the
dimensionless shape factor log(B) (4).
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Figure 3. Relationship between the selected plane of truncation
and the resulting harness angle
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'uApex
Secant line "sl”

in plane of x and
in plane of r,

Arc in plone of r,

Arc in plane of.x

Figure 4. Parameters for developing gore patterns. The plane
created by r, through de is orthogonal to the surface of the
drop. The plane created by x through any angle 27/n is orthogonal

to the axis of symmetry.
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COMPARISON OF X-RADIUS AND R2-RADIUS
LOG(B)=-.24, V=0.1 M~3, N=6
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Figure 5. Comparison of the radii used to create gores using the
x-radius and r,-radius modelling methods. The greatest percent
difference occurs at the apex, the greatest absolute difference

at 6 = 45,



TENSILE MODULUS: MIL-C-7020G Type |
W =273 CM

TENSILE MODULUS (N/m)
(Thousands)
N N w o
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-
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0 250 500 750 1000 1250 1500 1750 2000
FORCE (N/m)

Figure 6. Tensile modulus of the membrane material: MIL-C-7020G
Type I parachute fabric.
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TENSILE MODULUS: MIL-C-5040G TYPE IIA
3000
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N
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Figure 7. Tensile modulus of the harness material: MIL-C-5040G
Type IIA parachute cord.
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A/V RATIO wrt THETA FOR SEVERAL
VALUES OF LOG(B)
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m LOG(B)=-0.36 + LOG(B)=-0.33 * LOG(B)=-0.30
D LOG(B)=—0.27 X LOG(B)=-0.24

Figure 8. Dimensionless surface-to-volume ratios computed from
the data in reference 4 for values of 6 and log(B).

32



~ US. Gov1i

Sean

Horness
Confluence

Dpen{ng
(Lobed)

Horness .
Leg

Confluence

TOP VIEW

Opening
{Scolloped)

Horness Leg
Attochnent
Point

Gore
Seon

SIDE VIEW

Distortion at the opening of the envelope membrane

Figure 9.
ross-section is lobed. Scalloping is obvious is

under load. The ¢
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A
1 3
- D -
F
E
Dimension " Model %6 Model 26
(View 31) (View $2)
A 1.03 ’ 1.02
B 0.99 1.01
] 1.05 1.04
D 0.99 0.99
E 0.98 0.99
F 0.93 *

*pData could not be obtained. View of the opening was obscured by
excess inner membrane material projecting from the opening.

Figure 10. Photogrammetry data from Model #6. Each value given is
the ratio of the dimension on the model to the corresponding
dimension on the silhouette. View#l and View §2 differ by a 15
degree rotation of the model about the axis of symmetry
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APPENDIX A
Mode]l Summary

Model #1: Model #1 was a 6-gore model of 5 kg capacity fabricated
using the x-radius method of modelling. No sewing take-up allowance
was incorporated. The tensile modulus for the membrane stress was
arbitrarily set at 17,777 N/m. No apex cap was installed. The
length of the harness was marked while the model was under load,
and the harness legs tied together at that point using a waxed
cord. i _

During visual evaluation the model appeared slightly oblate. Volume
was 4150 mL compared to the theoretical capacity of 5000 mL.

Model #2: Model #2 was a 6-gore model of a nominal 5 kg capacity
constructed using the x-radius modelling method. In this model, a
1.02 correction coefficient was applied to dimensions along the
gore axis. No correction was applied to gore width dimensions. The
intent was to compensate for the oblate shape seen in Model #1.
Again the tensile modulus for the membrane stress was arbitrarily
set at 17,777 N/m, and the 1length of the harness legs was
determined under load. o ,

During visual evaluation this model was decidedly prolate, and held
only 4100 mL of the theoretical 5000 mL capacity.

Model #3: Model #3 was a 5 kg, 6-gore model constructed using the
- x-radius modelling method. The tensile modulus was set at 17,777
N/m and an arbitrary 1.04 sewing take-up correction factor was
applied to all gore dimensions. An apex cap about 5 cm in diameter
was installed to control dimensional instability in the nose area
where the gore seams met. Harness leg lengths were determined under
load.

The oblate shape seen in Model #1 was also present in this model.
capacity was 4930 mL of the theoretical 5000 mL.

Model #4: Model #4 was a 5 kg, 6-gore model constructed using the
r,-perp method. The tensile modulus was set at 17,777 N/m and an
arbitrary 1.04 sewing take-up coefficient was applied to all gore
dimensions. An apex cap was installed and harness leg lengths were
determined under load.

The shape of this model was conical at the apex area. Volume was
4720 of the theoretical 5000 mL.

Model #5: Model #5 was a 6-gore, 25 kg capacity model constructed
using the r,-radius method. A 1.04 sewing take-up correction
coefficient was applied to all gore dimensions. Tensile modulus was
set at 17,777 N/m and harness leg lengths determined under load. An
apex cap was installed.
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visual evaluation showed the profile of this model to be comparable
to its silhouette. Deformation in the area of the opening (reduced
diameter, a lobed cross-section and scalloping of the edges between
harness legs), noted in all models, was -particularly evident in
this model. The volume of water it held was not determined.

Model #6: Model #6 was a 5 Kg, 12-gore model based on the r,-radius
method. Tensile modulus was determined by the computer program on
the basis of the tensile modulus testing which had been performed.
A 1.02 sewing correction coefficient, also based on testing, was
applied to all gore dimensions. An apex cap was installed. The
harness leg length was determined under load.

Visual comparison of the profile of this model with its silhouette
was excellent. Distortion in the harness attachment area were
reduced. Volume was 4560 mL of the theoretical 5000 mL.

Model #7: Model #7 was a 50 kg proof-of-concept model having 12
gores fabricated per the r,-radius method. Corrections for stress
and sewing take-up on membrane and harness materials were performed
on the basis of materials testing. A volume correction coefficient
of 1.097 was applied by the computer program to the input volume.
An apex cap was installed. Harness legs were precut to the correct
length and then installed.

The suspended model was visually evaluated, but no silhouette
existed for this size model. Distortions in the opening area seen
on Model #5 were greatly reduced. The capacity of this model was
not determined. Weight and bulk were recorded.
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APPENDIX B
MATERIALS AND METHODS
teri ectio

An extensive selection of candidate materials exists for
application to the design of underwater lift devices. Many are
currently used in aerospace applications such as parachute recovery
systems, where low bulk and high strength are important. These
materials include nylon, dacron, kevlar, nomex, and spectra, as
well as hybrid materials woven from combinations of these
materials. Characteristics of a few of these materials are
presented in Table V.

Time constraints did not permit a detailed comprehensive trade
study of all cardidate materials. Selection was based primarily on
the basis of the investigators’ knowledge. Considerations included
weight, thickness, strength, expense, and availability.

a es
Tensile Modulus Testing
Outer Membrane Material

A strip of fabric about 5 cm wide was cut to a length of about one
meter. Each end was mounted firmly in clamps with rubber-lined jaws
2.73 cm wide. The fabric was aligned with warp yarns parallel to
the direction of pull. One clamp was mounted on an overhead beam
and the other attached to a lightweight bucket that was allowed to
hang freely. Two marks 76 cm apart were made on the fabric. Weights
were sequentially added to the bucket in 5 N increments (equivalent
to .510 kg mass) to a total of 50 N. The distance between the marks
was recorded one minute after each weight was added. The delay
permitted equilibrium to be established.

The weight provided the stress distributed across the width of the
fabric in N/m, and the original length in meters and resulting
elongation in meters were directly measured.

Harness Material

The harness material was tested similarly. Loops were fingertrapped
(5) in each end of a coupon about one meter long. One end was fixed
to an overhead beam and the free end to the bucket. Two marks were.
made 87 centimeters apart on the coupon. Weights of several sizes
were added sequentially to the weight bucket to a maximum of 174 N,
and, after a one minute delay to allow equilibrium to be
established, the amount of elongation was recorded.
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Data Reduction

Functions relating moduli and stress were generated for both
membrane and harness material through regression analysis using
Cricket software on a Macintosh SE computer.

Sewing Take-up Testing

The fabric pieces of the outer membrane were joined using a simple
301 machine lockstitch (5). The fabrication take-up of this stitch
was documented using four long coupons of fabric. First, a doubled
piece of outer membrane fabric was laid out and gently stretched to
remove wrinkles. Two marks 80 cm apart were made on the fabric, and
a seam of the selected type was sewn along the two layers between
the two marks. After sewing, the fabric was again stretched, only
enough to remove wrinkles, and the distance between the marks

measured.

computer Design Program

The interactive computer design program was written in generic
BASIC (BASICA or GWBASIC) on a 386-based personal computer.

ode onstruct

Raw materials for the models were obtained from ParaGear Equipment
Company, Skokie, Illinois, 60076. Part numbers given below are from
ParaGear Catalog #55 (1990-1991).

- The computer program was used to generate construction data. A gore
pattern was drawn on light cardboard stock and traced onto the
membrane material (P/N W9190). Gores were block cut in that the
gore axis was oriented parallel to the warp or fill of the fabric.
A seam allowance of roughly 3/4" was allowed in cutting out the
gores. The gores were sewn together on a common Sears Kenmore
household sewing machine with a 301 lockstitch using nylon "E"
thread (P/N T-1009) at a machine setting of six stitches per inch
(spi). An apex cap of adhesive-backed membrane material (P/N W901)
was installed on many of the 5 kg models to control the dimensional
instability that occurred where the seams met at the apex. Apex
caps without the adhesive backing were sewn onto the apices of the
envelopes of the two larger models for the same purpose. Harness
legs of Type IA material (P/N W9660) were attached using the same
stitch. A 304 lockstitch (single throw zig-zag) was used at six spi
to attach harness legs of Type IIA material (P/N W9670 with core
lines removed). In all models the number of harness legs equaled
the number of gores. A excellent discussion of fabric joints,
stitch types, and fabrication techniques applicable to the types of
materials used in this study can be found in reference 5.

For smaller models, harness legs were evenly cut to excess length
after installation, gathered, and knotted at the most distal point.
During suspended testing (that is, under load) the correct length
was marked, and either another overhand knot was tied, or the
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harness was otherwise gathered together at that point by tying a
length of heavy waxed cord (P/N T1050) around the harness legs.

on the 50 kg proof-of-concept model, small loops were fingertrapped
in the confluence end of each harness leg before installation. The
required length, determined by the computer design program, was
then marked on each harness leg, and the leg was then installed
using the 304 lockstitch as noted above. The confluence was formed
by threading the fingertrapped loops onto a #5 Maillon Rapide rapid
connector link (P/N H358-5).

For most testing, the inner membranes of the models were generally
not fastened to the outer membranes. For underwater testing,
however, the membranes were either taped together using double-
sided masking tape or stapled together at the opening of the
envelope.

Five 5 kg models, one 25 kg model, and one 50 kg model were
constructed during the course of this project. The models are
briefly described in Appendix A.

ode s
suspended Testing
Capacity Testing

Capacities of the smaller lift devices (5 kg) were obtained by
filling them to maximum capacity, then siphoning the water into a
2 L graduated cylinder as required to empty them, and noting the
volume. Capacities of the two largest models were not determined.

Profile Testing

All models except Model #6 received only a subjective visual
evaluation of their profile during suspended testing.

The profile of Model #6 was photogrammetrically compared to its
theoretical shape. A black-on-white silhouette representing the
theoretical shape was fabricated using dimensions calculated from
the Z and X data for the shape factor log(B)=-0.24 (Table I). The
silhouette was photographed using a Minolta X-700 35 mm camera
equipped with a 210 mm telephoto lens and ASA 160 slide film. The
camera-to-subject distance was adjusted so that the image filled
the frame. Without disturbing the camera, the silhouette was
replaced by the water filled l1ift bag, which was alsc photographed.
The two slides were then projected from the same distance onto a
screen where comparative measurements were taken. The ratios of
each dimension measured on the projection of the model to the
corresponding dimension measured on the projection of the
silhouette were calculated.

40



Bulk and Mass Comparison Testing

The 50 kg capacity proof-of-concept lift device was weighed on a
Mettler balance (P/N PM4600), and its packaged volume estimated by
loosely wrapping the envelope with the harness, and measuring the
resulting package with a centimeter rule (assuming a rectangular
parallelopiped shape). Information was obtained similarly for a 50
kg capacity lift device manufactured by J.W. Automarine, Norfolk,

England.

Underwater Testing

Three of the models were taken into a 2.6 m (8.5 ft) deep indoor
pool for evaluation. Two lead ingots of approximately 11.4 kg (25
lbs) each and an assortment of lead weights normally used for scuba
diving were available to provide simulated loads. Underwater
photographs were taken using a disposable waterproof Kodak 35 mm
camera (Fun Saver Weekend 35). The camera came preloaded with ASA
400 color print film.
Models #1 & #6

Deployment, handling, inflation and ascent characteristics were
evaluated.

Test #1: Models were attached to a 0.9 kg (2 1lb) mass, inflated
until some small positive buoyancy was achieved, and ascent
characteristics observed.

Test #2: Test #2 was identical to Test #1, but the mass to be
lifted was nearer maximum capacity. Model #1 carried 4.5 kg (10
lbs) and Model #6 carried 5 kg (11 1bs).

Test #3: Ascent characteristics of the fully inflated model under
a minimum load of 0.9 kg (2 lbs) were also ascertained. This test
simulates a common marine salvage situation in which an object is
mired in the bottom substrate, and force substantially in excess of
its in-wvater weight is required to initiate ascent.

Model #7

The proof-of-of concept model could not be tested underwater to
full capacity (50 kg) because the amount of lead mass available was
not sufficient. Deployment, handling, inflation, and ascent
characteristics under a submaximal load of 22.8 kg (50 1lbs) were

evaluated, however.
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APPENDIX C

REM PENDANT DROP ULB DESIGN PROGRAM - USES R2 ARCRADIUS INSTEAD OF X
REM ANY BLINKING VALUES IMPLY THAT THEY EXCEED KNOWN OR TESTED RANGES.

SCREEN 0

COLOR 15,2,0

CLS: PRINT: PRINT: PRINT: PRINT
LET PI = 3.141592654#

COLOR 15,1,0

PRINT " _ PENDANT DROP UNDERWATER LIFT BAG DESIGN PROGRAM

PRINT " SHAPE FACTOR: LOG(B) = -0.24

PRINT "MEMBRANE: MIL-C-7020G TYPE I

C-5040 TYPE II":PRINT:PRINT:PRINT

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

- 460

470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620

COLOR 15,2,0

HARNESS: MIL-

S=1. 53332: XM=, 490549: XE=. 614764:7=1.17324:A=4.40083:V=1.05287
THD=115:ZH=1.051986: SUMZ=2.225226:LH=1.160738:FTUH=1.02:VCD=1.097

YSIGH=17777:YHH=15000:RAD=P1/180:K=0:K1=0

COLOR 15,1,0

INPUT "FRESH WATER LIFTING CAPACITY (KG): ",KG
COLOR 15,1,0:PRINT ’
INPUT "NUMBER OF GORES: “.N

COLOR 15,1,0:PRINT

IF N < 6 THEN 270

IF N = 12 THEN 370

PRINT "INPUT VOLUME CORRECTION COEFFICIENT"

INPUT "FROM 0.90 TO 1.20 (DEFAULT IS 1.00): ",VCD -

COLOR 15,1,0:PRINT

IF VCD=0 THEN VCD=1

IF VCD>=.9 AND VCD=<1.2 GOTO 370
GOTO 310

PRINT "INPUT FABRICATION TAKE-UP COMPENSATION COEFFICIENT"

INPUT "FROM 1.00 TO 1.10. (DEFAULT IS 1.02): ",FTU
COLOR 15,1,0:PRINT

IF FTU=0 THEN FTU=FTUH

IF FTU>=1 AND FTU=<1.1 GOTO 440

GOTO 370 ,

COLOR 0,1,0:CLS

REM COMPUTES VOLUME BASED ON SELECTED LIFT CAPACITY
LET M3 = KG/1000

REM INCREASES VOLUME TO CORRECT FOR MOUTH AREA DEFORMATION

LET M3 = M3 * VCD:REM ALL FURTHER CALCS BASED ON THE NEW M3!

REM COMPUTES C FROM THE VOLUME

LET C = (V/M3)~(2/3)

LET SC = SQR(C)

REM COMPUTES SIGMA FROM C DELTARHO AND G
LET SIG = (998.71*9.800999)/C

REM RELATES SIGMA TO THE 42 LB/IN MAX OF MIL-SPEC NYLON

LET NYLSIG = (SIG*100)/7347.9

IF NYLSIG>=20 THEN K=1

REM COMPUTES YSIG BASED ON ELONGATION TESTS

REM EXPONENTIAL CURVE FIT FROM MACINTOSH CRICKET

YSIG = 11423*10~((2.4323E-04)*(SIG)):REM R*2 IS .96 FOR UP TO 2000 N/M
REM FIGURES A/V AT THE C ASSOCIATED WITH THE SELECTED CAPACITY

LET AV = (A/V)*SC
REM COMPUTES FORCE ON EACH HARNESS LEG
LET FH = (KG*10. 81421)/N
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IF FH.>= 174 THEN K1 = 1 :

REM COMPUTES YH BASED ON ELONGATION TESTS - .
REM SIMPLE LINEAR REGRESSION FROM QUATTRO PRO
YH = 7.72*FH + 1078

REM FIGURES CIRCUMFERENCE -

LET CIRC = 2*PI*XE/SC

REM SCREEN PRINTOUT OF INFO FOR USER EVALUATION
CLS : £
COLOR 15,1,0 - ’

PRINT " PENDANT DROP UNDERWATER LIFT BAG DESIGN PROGRAM®

PRINT "MIL-C-7020G TYPE 1 MEMBRANE MIL-C-5040 TYPE II HARNESS®

PRINT . SHAPE FACTOR: LOG(B) = -0.24"

COLOR 15,2,0

PRINT "LIFT CAPACITY (KG)...coovvrerrannnnn eeirasaseiaes ";KG
COLOR 15,1,0

PRINT "NUMBER OF GORES...ovvuuvsoernvasssonsaasaransnans "3
PRINT "FABRICATION TAKE-UP COMPENSATION COEFFICIENT..... ";FTU
PRINT " CHARACTERISTICS AT FULL LOAD"

PRINT "VOLUME DISPLACED (M*3)....covceurnininncnacnncanss "iM3
PRINT "VOLUME CORRECTION COEFFICIENT.........c.evvvnennns ";VCD

COLOR 15,2,0
IF K = 1 THEN COLOR 31,4,0

PRINT "MEMBRANE STRESS (SIGMA IN N/M)........cccevenenen ";SIG

PRINT ". AS % OF U.T.S. OF MIL-C-7020G TYPE I...... ";NYLSIG
COLOR 15,1,0 ’

PRINT "TENSILE MODULUS OF MEMBRANE (AT LOAD) (N/M)...... ";YSIG

PRINT "TOTAL SURFACE AREA (M*2)......cccvinvnionecennnns ";A/C

PRINT "SURFACE TO VOLUME RATIO......ccconnuieecanaannann "SAV

PRINT "TOTAL HEIGHT, APEX TO HARNESS CONFLUENCE (CM).... ";100*SUMZ/SC
PRINT "ENVELOPE HEIGHT (CM).....ccvvveriernninnencnnannes "3100*Z/SC
PRINT "MOUTH DIAMETER (CM)........ ebesesessssererearnes ";200*XM/SC
“PRINT "MAXIMUM DIAMETER (CM)........... Cersaseseanaennne "3200*XE/SC
PRINT "AXIAL DISTANCE ALONG GORE CENTERLINE (CM)........ "35*100/SC
PRINT "MAXIMUM WIDTH OF A GORE (CM).....cocvvnenninnnns ";100*CIRC/N
PRINT "HARNESS LEG LENGTH (CM)....... treseseansesaas «ee. "3100*%LH/SC

COLOR 15,2,0
IF K1 = 1 THEN COLOR 31,4,0

PRINT "FORCE ON EACH HARNESS LEG (N)....covvvvecaancnnns ";FH
COLOR 15,1,0
PRINT "TENSILE MODULUS OF HARNESS (AT LOAD) (N)......... ";YH

INPUT "REDESIGN? (1=YES) ",Q1:IF Ql=1 THEN 100

INPUT "HARDCOPY OF DESIGN AND CONSTRUCTION DATA? (1=YES) ",Q2
IF Q2 <> 1 THEN 1730
COLOR 31,4,0 B : :
CLS:PRINT: PRINT: PRINT: PRINT:PRINT "WORKING......... e rarereees "
REM COMPUTES CORRECTION FACTOR FOR MEMBRANE DIMENSIONS

LET CF = YSIG/(SIG+YSIG)

REM COMPUTES CORRECTION FACTOR FOR HARNESS MATERIAL

CFH = YH/(FH+YH)

REM BEGINS HARDCOPY PRINTOUT

LPRINT * DENDANT DROP UNDERWATER LIFT BAG DESIGN PROGRAM"
LPRINT * SHAPE FACTOR: LOG(B) = -0.24" . .

LPRINT "MEMBRANE: MIL-C-7020G TYPE I HARNESS: MIL-C-5040 TYPE II"
LPRINT "LIFT CAPACITY (KG).cvvevvvrnnnnnannnnns cessnenses ";KG

LPRINT "BUOYANT FORCE (N)...ccvvivennnnnnnnnonrecnnnnnons ";KG*9.800999
LPRINT "NUMBER OF GORES......ccvvsvseseanvacccarneccancens "3

LPRINT "FABRICATION TAKE-UP CORRECTION COEFFICIENT....... ";FTU

LPRINT "*************CHARACTERISTICS AT FULL LOAD*********************“
LPRINT "VOLUME DISPLACED (M*3)......ccevvennn wereesensane "sM3

LPRINT "BUOYANT FORCE (N)...coveecrinnanns besserreaaneans ";KG*9.800999
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LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
- LPRINT
LPRINT

"MEMBRANE STRESS (SIGMA N/M).. . vocieoiiinennonnne
" AS % OF U.T.S. OF MIL-C-7020G TYPE I.....
"TENSILE MODULUS OF MEMBRANE (AT LOAD) (N/M).....
"FORCE ON EACH HARNESS LEG (N)......cvveenvannnnn
"TENSILE MODULUS OF HARNESS (AT LOAD) (N)........
"C PARAMETER (MA-2)...vvvnivrconernnnenannnninnns
"SQUARE ROOT OF C PARAMETER (MA-1).... «cevvennn.
"TOTAL SURFACE AREA (MA2).....ccvvivnnininnennannn
"SURFACE TO VOLUME RATIO.....ccovvvensncenssncnns

"TOTAL HEIGHT, APEX TO HARNESS CONFLUENCE (CM)..

"ENVELOPE HEIGHT (0 ) T E R R
"MOUTH DIAMETER (CM)...cvveemnnenrnnennnnnnnnnnnn
"MAXIMUM DIAMETER (CM)....cccveevncnnnconnnnennns
"AXIAL DISTANCE ALONG GORE CENTERLINE (CM).......
"MAXIMUM WIDTH OF A GORE (CM)........cccivvuninnnn
"HARNESS LEG LENGTH (CM)......covevenncnnannsnnss

";SIG
" NYLSIG

" lOO*SUMZ/SC
":100*Z/SC
":200%XM/SC
"+ 200*XE/SC
":100*S/SC

"+ 100*CIRC/N
"+100*LH,/SC

wiwikkaukmkkCONSTRUCTION DATA (IN CENTIMETERS)*hiktkinknssinn

" CORRECTED FOR STRESS AND FABRICATION TAKE-UP"
RADIAL DISTANCE FROM"

"AXIAL DISTANCE ON. GORE

"CENTERLINE FROM APEX GORE CENTERLINE"

THD=5:5=.0502324:X=.0501687:GOSUB 1780

THD=10:
THD=15:
THD=20:
THD=25:
THD=30:
THD=35:
THD=40:
- THD=45
THD=50:
THD=55:
THD=60:
THD=65:
THD=70:
. THD=75:
THD=80:
THD=85:
THD=90:

THD=95

S=.10056:X=.10005:GOSUB 1780

S=.151079:X=.149356:G0SUB 1780
S=.201889:X=.197798:GOSUB 1780
S=.253091:X=.245086:GOSUB 1780
S=.304793:X=.29093:GOSUB 1780
S=.357109:X=.335036:G0SUB 1780
S=.410161:X=.377108:GOSUB 1780

:S=.464083:X=.416846:G0SUB 1930

S=.519022:X=.453945:GOSUB 1780
S=.575144:X=.488092:GOSUB 1780
S=.632639:X=.518965:G0SUB 1780
S=.691726:X=.546228:G0SUB 1780

S=.752668:X=.
S=.815783:X=.
S=.881472:X=.

569529:GOSUB
588486:G0SUB
602679:G0OSUB

1780
1780
1780

S=.950257:X=.61163:G0SUB 1780
S=1.02285:X=.614764:G0SUB 1850

:S=1.10029:X=.611348:GOSUB 1780

THD=100:S=1.1842:X=.600344:G0SUB 1780
THD=105:S=1.27748:X=.580079:GOSUB 1780
THD=110:S=1.38647:X=.547169:G0SUB 1780
THD=115:S=1,53332:X=.490549:GOSUB 2010

LPRINT "HARNESS LEG LENGTH (M).......

LPRINT
LPRINT
LPRINT
LPRINT
LPRINT

LPRINT CHR$(12)
COLOR 15,1,0
CLS:PRINT:PRINT

PRINT "PROGRAM TERMINATED........ "

FOR I = 1 TO 20:SOUND RND*1000+37,.4:NEXT I
END '

LET DS = (FTU*S*CF*100)/SC:LET THR = THD*RAD
THR=THD*RAD

LET ARG = (SIN(PI/N)*SIN(THR))

LET INVSIN = ATN(ARG/SQR(-ARG*ARG+1))

LET ARC

= (CF*FTU*100*X*INVSIN)/(SIN(THR)*SC)
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" s (LH/SC)*CFH*100 -

"DIMENSIONAL CORRECTION COEFFICIENT - MEMBRANE....
"LENGTH CORRECTION COEFFICIENT - HARNESS
"VOLUME CORRECTION COEFFICIENT FOR DISTORTION
"COMPLETE (PDULB24N.BAS).....ccvvvveravneens

----------

";CF+FTU
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LPRINT USING " ###. #### ad# ##44";  DS,ARC
RETURN :
REM FOR EQUATOR

LET DS = (FTU*S*CF*100)/SC:LET THR = THD*RAD

LET THR=THD*RAD |

LET ARG = (SIN(PI/N)*SIN(THR))

LET INVSIN = ATN(ARG/SQR(-ARG*ARG+1))

LET ARC = (CF*FTU*100*X*INVSIN)/(SIN(THR)*SC) |
LPRINT USING "  ###. ##4# : 444 4444 (THD=90)";
RETURN

REM THETA = 45

LET DS = (FTU*S*CF*100)/SC:LET THR = THD*RAD

LET THR=THD*RAD

LET ARG = (SIN(PI/N)*SIN(THR))

LET INVSIN = ATN(ARG/SQR(-ARG*ARG+1)) |

LET ARC = (CF*FTU*100*X*INVSIN)/(SIN{THR)*SC)

LPRINT USING "  ###.#4## 48 4444 (THD=45)";
RETURN - :

REM THETA AT 115 (TRUNCATION)

LET DS = (FTU*S*CF*100)/SC:LET THR = THD*RAD

LET THR=THD*RAD |

LET ARG = (SIN(PI/N)*SIN(THR)) :

LET INVSIN = ATN(ARG/SQR(-ARG*ARG+1))

LET ARC = (CF*FTU*100*X*INVSIN)/(SIN(THR)*SC)

kg$ég; USING " ##4. 8444 444 #4484 (THD=115)";

45
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